Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 48(2): 167-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29113783

RESUMO

By searching nucleotide databases for the North American Lyme disease vector, Ixodes scapularis, we have complemented the previously characterized European Ixodes ricinus legumain IrAE1 with a full set of nine analogous genes (isae1-9). Six of these were PCR confirmed as genes present in all tick genomes tested. The absolute mRNA copy number examined by quantitative (q)PCR enabled expression profiling and an absolute comparison of mRNA levels for individual I. scapularis (Is)AEs in tick tissues. Four IsAEs (1, 2, 4, 9) were expressed solely in the gut and thus are proposed to be involved in host blood digestion. Expression qPCR profiling over developmental stages confirmed IsAE1, the direct analogue of previously characterized I. ricinus IrAE1, as the principle legumain transcript in partially engorged females, and demonstrated its strong regulation by on-host feeding in larvae, nymphs and females. In contrast, IsAE2 was the predominant gut legumain in unfed nymphs, unfed females and males. In-silico, IsAE1 and IsAE2 protein three-dimensional structural models displayed minimal differences in overall proenzyme structures, even in comparison with recently resolved crystal structures of mammalian prolegumain. Three functional studies were performed in I. ricinus with IsAE1/IsAE2 analogues: double IrAE1/IrAE2 RNA interference silencing, feeding of ticks on IrAE1+IrAE2 immunized hosts and in vitro membrane tick feeding on blood containing a legumain-specific inhibitor. The latter experiment led to reduced weights of fully engorged ticks and limited oviposition, and indicated the potential of legumain inhibitors for novel anti-tick interventions.


Assuntos
Proteínas de Artrópodes/metabolismo , Cisteína Endopeptidases/metabolismo , Ixodes/enzimologia , Infestações por Carrapato/veterinária , Vacinas/imunologia , Sequência de Aminoácidos , Animais , Vetores Aracnídeos/enzimologia , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/genética , Sequência de Bases , Clonagem Molecular , Cisteína Endopeptidases/classificação , Cisteína Endopeptidases/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Isoenzimas , Masculino , Modelos Moleculares , Conformação Proteica , Coelhos , Proteínas Recombinantes/imunologia , Infestações por Carrapato/prevenção & controle
2.
Elife ; 52016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949258

RESUMO

Haem and iron homeostasis in most eukaryotic cells is based on a balanced flux between haem biosynthesis and haem oxygenase-mediated degradation. Unlike most eukaryotes, ticks possess an incomplete haem biosynthetic pathway and, together with other (non-haematophagous) mites, lack a gene encoding haem oxygenase. We demonstrated, by membrane feeding, that ticks do not acquire bioavailable iron from haemoglobin-derived haem. However, ticks require dietary haemoglobin as an exogenous source of haem since, feeding with haemoglobin-depleted serum led to aborted embryogenesis. Supplementation of serum with haemoglobin fully restored egg fertility. Surprisingly, haemoglobin could be completely substituted by serum proteins for the provision of amino-acids in vitellogenesis. Acquired haem is distributed by haemolymph carrier protein(s) and sequestered by vitellins in the developing oocytes. This work extends, substantially, current knowledge of haem auxotrophy in ticks and underscores the importance of haem and iron metabolism as rational targets for anti-tick interventions.


Assuntos
Heme/metabolismo , Carrapatos/fisiologia , Animais , Fertilidade , Reprodução , Carrapatos/metabolismo
3.
Ticks Tick Borne Dis ; 7(4): 604-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26724897

RESUMO

Host blood proteins, represented mainly by hemoglobin and serum albumin, serve as the ultimate source of amino acids needed for de novo protein synthesis during tick development and reproduction. While uptake and processing of hemoglobin by tick gut cells have been studied in detail, molecular mechanisms of host serum albumin degradation remain unknown. In this work, we have used artificial membrane feeding of Ixodes ricinus females on a hemoglobin-free diet in order to characterize the proteolytic machinery involved in albuminolysis. Morphological comparisons of ticks fed on whole blood (BF) and serum (SF) at microscopic and ultrastructural levels showed that albumin and hemoglobin have different trafficking routes in tick gut cells. Analysis in vitro with selective inhibitors demonstrated that albumin is degraded at an acidic pH by a network of cysteine and aspartic peptidases with predominant involvement of cysteine cathepsins having endo- and exopeptidase activities. The cleavage map of albumin and the roles of individual peptidases in albumin degradation were determined. These results indicate that the albuminolytic pathway is controlled by the same proteolytic system that is responsible for hemoglobinolysis. This was further supported by the overall similarity of gut peptidase profiles in SF and BF ticks at the transcriptional and enzymatic activity levels. In conclusion, our work provides evidence that although hemoglobin and albumin are transported differentially during heterophagy they are digested by a common multienzyme proteolytic network. This central digestive system, critical for successful blood feeding in tick females, thus represents a valuable target for novel anti-tick interventions.


Assuntos
Ácido Aspártico Proteases/metabolismo , Cisteína Proteases/metabolismo , Ixodes/enzimologia , Proteólise , Albumina Sérica/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Hemoglobinas/metabolismo , Concentração de Íons de Hidrogênio
4.
Parasit Vectors ; 3: 119, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21156061

RESUMO

BACKGROUND: Ticks are vectors of a wide variety of pathogens causing severe diseases in humans and domestic animals. Intestinal digestion of the host blood is an essential process of tick physiology and also a limiting factor for pathogen transmission since the tick gut represents the primary site for pathogen infection and proliferation. Using the model tick Ixodes ricinus, the European Lyme disease vector, we have previously demonstrated by genetic and biochemical analyses that host blood is degraded in the tick gut by a network of acidic peptidases of the aspartic and cysteine classes. RESULTS: This study reveals the digestive machinery of the I. ricinus during the course of blood-feeding on the host. The dynamic profiling of concentrations, activities and mRNA expressions of the major digestive enzymes demonstrates that the de novo synthesis of peptidases triggers the dramatic increase of the hemoglobinolytic activity along the feeding period. Overall hemoglobinolysis, as well as the activity of digestive peptidases are negligible at the early stage of feeding, but increase dramatically towards the end of the slow feeding period, reaching maxima in fully fed ticks. This finding contradicts the established opinion that blood digestion is reduced at the end of engorgement. Furthermore, we show that the digestive proteolysis is localized intracellularly throughout the whole duration of feeding. CONCLUSIONS: Results suggest that the egressing proteolytic system in the early stage of feeding and digestion is a potential target for efficient impairment, most likely by blocking its components via antibodies present in the host blood. Therefore, digestive enzymes are promising candidates for development of novel 'anti-tick' vaccines capable of tick control and even transmission of tick-borne pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...